On the existence of (k, l)-kernels in infinite digraphs: A survey
نویسندگان
چکیده
Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. A (k, l)-kernel N of D is a k-independent (if u, v ∈ N , u 6= v, then d(u, v), d(v, u) ≥ k) and l-absorbent (if u ∈ V (D) − N then there exists v ∈ N such that d(u, v) ≤ l) set of vertices. A k-kernel is a (k, k− 1)-kernel. This work is a survey of results proving sufficient conditions for the existence of (k, l)-kernels in infinite digraphs. Despite all the previous work in this direction was done for (2, 1)-kernels, we present many original results concerning (k, l)-kernels for distinct values of k and l. The original results are sufficient conditions for the existence of (k, l)kernels in diverse families of infinite digraphs. Among the families that we study are: transitive digraphs, quasi-transitive digraphs, right/left pretransitive digraphs, cyclically k-partite digraphs, κ-strong digraphs, k-transitive digraphs, k-quasi-transitive digraphs.
منابع مشابه
On (k, l)-kernels in D-join of digraphs
In [5] the necessary and sufficient conditions for the existence of (k, l)-kernels in a D-join of digraphs were given if the digraph D is without circuits of length less than k. In this paper we generalize these results for an arbitrary digraph D. Moreover, we give the total number of (k, l)-kernels, k-independent sets and l-dominating sets in a D-join of digraphs.
متن کاملCombinatorial game theory foundations applied to digraph kernels
Known complexity facts: the decision problem of the existence of a kernel in a digraph G = (V,E) is NP-complete; if all of the cycles of G have even length, then G has a kernel; and the question of the number of kernels is #P-complete even for this restricted class of digraphs. In the opposite direction, we construct game theory tools, of independent interest, concerning strategies in the prese...
متن کاملA sufficient condition for the existence of k-kernels in digraphs
In this paper, we prove the following sufficient condition for the existence of k-kernels in digraphs: Let D be a digraph whose asymmetrical part is strongly conneted and such that every directed triangle has at least two symmetrical arcs. If every directed cycle γ of D with `(γ) 6≡ 0(mod k), k ≥ 2 satisfies at least one of the following properties: (a) γ has two symmetrical arcs, (b) γ has fou...
متن کاملThe power digraphs of safe primes
A power digraph, denoted by $G(n,k)$, is a directed graph with $Z_{n}={0,1,..., n-1}$ as the set of vertices and $L={(x,y):x^{k}equiv y~(bmod , n)}$ as the edge set, where $n$ and $k$ are any positive integers. In this paper, the structure of $G(2q+1,k)$, where $q$ is a Sophie Germain prime is investigated. The primality tests for the integers of the form $n=2q+1$ are established in terms of th...
متن کاملKernels by Monochromatic Directed Paths In m-Colored Digraphs With Quasi-Transitive Chromatic Classes
In this paper, we give sufficient conditions for the existence of kernels by monochromatic directed paths (m.d.p.) in digraphs with quasi-transitive colorings. Let D be an m-colored digraph. We prove that if every chromatic class of D is quasi-transitive, every cycle is quasitransitive in the rim and D does not contain polychromatic triangles, then D has a kernel by m.d.p. The same result is va...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discussiones Mathematicae Graph Theory
دوره 34 شماره
صفحات -
تاریخ انتشار 2014